SRC "IKAR" - 34 years with you
skip

ACS use for nonlinear particle dynamic analysis:
for the pendulum of P.L. Kapitsa with the vibrating suspention point in and out of resonanse zone and for dynamics of particles considered their characteristics (charges and moments) in field's.

Let's take an example b)

with L = T - U, (1)
T = (d2X/dt2)**2, (2)
U = [E0+E1*cos(2*t)]*cos(X), (3)
the following problems are the particular cases:
  • - about the pendulum of Kapitsa when E0<0 ,
  • - dynamics of particles considered their characteristics (charges and moments) in field's and when X is small.

In approximation k=2, using "OPUS" system to (1-3) and expansion cos(X):

cos(X)=> {AS*[X-X**3/3]+AC*[1-X**2/2+X**4/24]},

where: a) AS=0, AC=1, expansion cos(X) near 0, b) AS=1, AC=0, expansion cos(X) near PI/2 (90 degrees), we'll get the results for S-function in form:

S = (3*E0*AC*Y(1,2,2)**4 + (12*E1*AC*Y(0,1,1)*Y(1,1,2) + 12*E1*AC*Y(0,1,2)* Y(1,1,1) + 12*E1*AC*Y(0,2,2)*Y(1,0,1) + 24*E1*AS*Y(0,2,2))*Y(1,2,2)**3 + ( 24*E0*AC*Y(1,2,1)**2 + ( - 24*E1*AC*Y(0,1,2)*Y(1,1,2) + 24*E1*AC*Y(0,1,1)* Y(1,1,1) + 48*E1*AC*Y(0,2,1)*Y(1,0,1) + 96*E1*AS*Y(0,2,1))*Y(1,2,1) + ( - 12*E1*AC*Y(0,2,1) + 48*E0*AC)*Y(1,1,2)**2 + (36*E1*AC*Y(0,2,2)*Y(1,1,1) + 96*E1*AC*Y(0,1,2)*Y(1,0,1) + 192*E1*AS*Y(0,1,2))*Y(1,1,2) + (12*E1*AC*Y(0, 2,1) + 48*E0*AC)*Y(1,1,1)**2 + (96*E1*AC*Y(0,1,1)*Y(1,0,1) + 192*E1*AS*Y(0 ,1,1))*Y(1,1,1) + 96*E0*AC*Y(1,0,1)**2 + 384*E0*AS*Y(1,0,1) - 192*E0*AC + 768)*Y(1,2,2)**2 + ((48*E1*AC*Y(0,1,1)*Y(1,1,2) + 48*E1*AC*Y(0,1,2)*Y(1,1, 1) + 48*E1*AC*Y(0,2,2)*Y(1,0,1) + 96*E1*AS*Y(0,2,2))*Y(1,2,1)**2 + ( - 24* E1*AC*Y(0,2,2)*Y(1,1,2)**2 + 96*E1*AC*Y(0,2,1)*Y(1,1,1)*Y(1,1,2) + 24*E1* AC*Y(0,2,2)*Y(1,1,1)**2)*Y(1,2,1) + 32*E1*AC*Y(0,1,1)*Y(1,1,2)**3 + (96*E1 *AC*Y(0,1,2)*Y(1,1,1) + 96*E1*AC*Y(0,2,2)*Y(1,0,1) + 192*E1*AS*Y(0,2,2))*Y (1,1,2)**2 + (96*E1*AC*Y(0,1,1)*Y(1,1,1)**2 + (384*E0*AC*Y(1,0,1) + 768*E0 *AS)*Y(1,1,1) + 192*E1*AC*Y(0,1,1)*Y(1,0,1)**2 + 768*E1*AS*Y(0,1,1)*Y(1,0, 1) - 384*E1*AC*Y(0,1,1))*Y(1,1,2) + 32*E1*AC*Y(0,1,2)*Y(1,1,1)**3 + (96*E1 *AC*Y(0,2,2)*Y(1,0,1) + 192*E1*AS*Y(0,2,2))*Y(1,1,1)**2 + (192*E1*AC*Y(0,1 ,2)*Y(1,0,1)**2 + 768*E1*AS*Y(0,1,2)*Y(1,0,1) - 384*E1*AC*Y(0,1,2))*Y(1,1, 1) + 64*E1*AC*Y(0,2,2)*Y(1,0,1)**3 + 384*E1*AS*Y(0,2,2)*Y(1,0,1)**2 - 384* E1*AC*Y(0,2,2)*Y(1,0,1) - 384*E1*AS*Y(0,2,2))*Y(1,2,2) + 48*E0*AC*Y(1,2,1) **4 + ( - 96*E1*AC*Y(0,1,2)*Y(1,1,2) + 96*E1*AC*Y(0,1,1)*Y(1,1,1) + 192*E1 *AC*Y(0,2,1)*Y(1,0,1) + 384*E1*AS*Y(0,2,1))*Y(1,2,1)**3 + (( - 144*E1*AC*Y (0,2,1) + 192*E0*AC)*Y(1,1,2)**2 + (48*E1*AC*Y(0,2,2)*Y(1,1,1) + 384*E1*AC *Y(0,1,2)*Y(1,0,1) + 768*E1*AS*Y(0,1,2))*Y(1,1,2) + (144*E1*AC*Y(0,2,1) + 192*E0*AC)*Y(1,1,1)**2 + (384*E1*AC*Y(0,1,1)*Y(1,0,1) + 768*E1*AS*Y(0,1,1) )*Y(1,1,1) + 384*E0*AC*Y(1,0,1)**2 + 1536*E0*AS*Y(1,0,1) - 768*E0*AC + 3072)*Y(1,2,1)**2 + ( - 128*E1*AC*Y(0,1,2)*Y(1,1,2)**3 + ((384*E1*AC*Y(0,2 ,1) - 384*E0*AC)*Y(1,0,1) + 768*E1*AS*Y(0,2,1) - 768*E0*AS)*Y(1,1,2)**2 + ( - 384*E1*AC*Y(0,1,2)*Y(1,0,1)**2 - 1536*E1*AS*Y(0,1,2)*Y(1,0,1) + 768*E1 *AC*Y(0,1,2))*Y(1,1,2) + 128*E1*AC*Y(0,1,1)*Y(1,1,1)**3 + ((384*E1*AC*Y(0, 2,1) + 384*E0*AC)*Y(1,0,1) + 768*E1*AS*Y(0,2,1) + 768*E0*AS)*Y(1,1,1)**2 + (384*E1*AC*Y(0,1,1)*Y(1,0,1)**2 + 1536*E1*AS*Y(0,1,1)*Y(1,0,1) - 768*E1 *AC*Y(0,1,1))*Y(1,1,1) + 256*E1*AC*Y(0,2,1)*Y(1,0,1)**3 + 1536*E1*AS*Y(0,2 ,1)*Y(1,0,1)**2 - 1536*E1*AC*Y(0,2,1)*Y(1,0,1) - 1536*E1*AS*Y(0,2,1))*Y(1, 2,1) + ( - 32*E1*AC*Y(0,2,1) + 48*E0*AC)*Y(1,1,2)**4 + (32*E1*AC*Y(0,2,2)* Y(1,1,1) + 192*E1*AC*Y(0,1,2)*Y(1,0,1) + 384*E1*AS*Y(0,1,2))*Y(1,1,2)**3 + (96*E0*AC*Y(1,1,1)**2 + (192*E1*AC*Y(0,1,1)*Y(1,0,1) + 384*E1*AS*Y(0,1, 1))*Y(1,1,1) + ( - 192*E1*AC*Y(0,2,1) + 384*E0*AC)*Y(1,0,1)**2 + ( - 768* E1*AS*Y(0,2,1) + 1536*E0*AS)*Y(1,0,1) + 384*E1*AC*Y(0,2,1) - 768*E0*AC + 768)*Y(1,1,2)**2 + (32*E1*AC*Y(0,2,2)*Y(1,1,1)**3 + (192*E1*AC*Y(0,1,2)*Y( 1,0,1) + 384*E1*AS*Y(0,1,2))*Y(1,1,1)**2 + (192*E1*AC*Y(0,2,2)*Y(1,0,1)**2 + 768*E1*AS*Y(0,2,2)*Y(1,0,1) - 384*E1*AC*Y(0,2,2))*Y(1,1,1) + 256*E1*AC* Y(0,1,2)*Y(1,0,1)**3 + 1536*E1*AS*Y(0,1,2)*Y(1,0,1)**2 - 1536*E1*AC*Y(0,1, 2)*Y(1,0,1) - 1536*E1*AS*Y(0,1,2))*Y(1,1,2) + (32*E1*AC*Y(0,2,1) + 48*E0* AC)*Y(1,1,1)**4 + (192*E1*AC*Y(0,1,1)*Y(1,0,1) + 384*E1*AS*Y(0,1,1))*Y(1,1 ,1)**3 + ((192*E1*AC*Y(0,2,1) + 384*E0*AC)*Y(1,0,1)**2 + (768*E1*AS*Y(0,2, 1) + 1536*E0*AS)*Y(1,0,1) - 384*E1*AC*Y(0,2,1) - 768*E0*AC + 768)*Y(1,1,1) **2 + (256*E1*AC*Y(0,1,1)*Y(1,0,1)**3 + 1536*E1*AS*Y(0,1,1)*Y(1,0,1)**2 - 1536*E1*AC*Y(0,1,1)*Y(1,0,1) - 1536*E1*AS*Y(0,1,1))*Y(1,1,1) - 1536*Y(1,0, 2)**2 + 128*E0*AC*Y(1,0,1)**4 + 1024*E0*AS*Y(1,0,1)**3 - 1536*E0*AC*Y(1,0, 1)**2 - 3072*E0*AS*Y(1,0,1)) / (3072),

Let's take an example with

X=>Y(1,1,1)*cos(t), cos(X) ~(1-X**2/2+X**4/24) and AS=0, AC=1, Y(1,1,1)=Y111, Y(0,2,1)=1, Y(1,0,1)=Y(1,0,2)=Y(1,1,2)=Y(1,2,1)=Y(1,2,2)=Y(0,1,1)=Y(0,1,2)=Y(0,2,2)=0.

Then from exetremum condition S, D1(J1)=0, obtain Y111**2=f(E0,E1)={12*(2*E0+E1-2)/(3*E0+2*E1)}. For roots LX from D2(J1,J2) we'll obtain equation: DT = DET{D2(LX,E0,E1,Y111)}=0. Solving DT relatively to LX through FACTORIZE(DT) we can obtain corresponding equation to find LX :

{LX**2+Y111**2*(E0/2+E1/2+1)/24}*f(LX) = 0, (4)

where Y111**2={12*(2*E0+E1-2)/(3*E0+2*E1)}, (5)

and f - a complex form function of LX, E0,E1. Existence of inverted pendelum (E0<0) stable state follows from the analysis (4) in parametrical resonanse zone …1>2*(1-…0). Calculating analogically for X ~ PI/2+Y(1,2,1)*cos(2*t), cos(X) ~ (X-X**3/3) for Y121=Y(1,2,1) and DT(LX)=0 we can obtain rather awkward expressions. In the simpler case with E0=0 from DT(LX) analysis it is not different to show that solution with

Y121={2*[SQRT(3*E1**2+16)-4]/(3*E1)}, (6)

is instaible on Y(1,0,1), Y(1,0,2). Dependence plots Y111, Y121 of E1 when E0=0 are given in pic.

It's easy to realise that solving jointly (5,6) the corresponding bifurcation point from the statement (see pic.) can be determined: Y111(E1)+Y121(E1)=PI/2, e.i. Y111 ~ 59 grade, Y121 ~ 31 grade, E1 ~ 2.44. Simultaneously in the case (with E0=0) bifurcation appearance can lead to chaos in the system (1-3). Fluctuations, errors from macrosystem used in physical analogue or numerical modeling of determined system described in (1-3) can be the reasons of bifurcation. As a result cascades of transitions between different types of periodic motions when …1 ~ 2.44 (oscillatory 1:2, 1:1, rotatory and so on) which are taken as chaos will be observed. Mashine modeling of the given system and hybrid complex and natural modeling on the magnetic compass needle which is set in magnetic field confermed the received results correctness.

Using "OPUS" in the trivial case when all Y(1,I2,I3)=0, the corresponding equation for LX has the following form: {LX**2+[(1-E0)**2-E1**2/4]/16}*{LX**4+LX**2*(1+E0/4)**2/4 +(1-E0/4)/8*[E1**2/16+E0*(1-E0/4)/2]/8} (7) from the 1st and 2nd bracket the solution of (7) stable solution upper and lower bound {E1**2/4<(1-E0)**2, E1**2>8*abs[E0*(1-E0/4)]} for the inverted pendulum (…0<0) out of parametric resonance 1:2 zone and stable solution absence in resonance zone. Non - linearity existance of principle in (3) for dynamic stability of instable states in resonanse zone is interesting to note. Doing the same calculations for cos(X)=> with the help of "OPUS" cos(X) ~(1-X**2/2+m*X**4/4) we can obtain for Y111 in parametric resonanse zone 1:2 : Y111**2={4*(1-E0-E1/2)/[m*(2*E1+3*E0)]} (8) m =>0 Y111=>00 follows from (8) expression it's characteristic for the linear system in parametric resonance zone.

Using "OPUS" system we could demonstrate theoreticaly and experementally the posibility of body and particles selective spatial confinement, their characteristics taken into consideration (charges, moments - mechanical, electric, magnetic) in resonance electromagnetic non - uniform fields [2] unlike confinement out of resonance zone [3-4].

...

......

Confinement of a grain Sm-Co in a resonance trap.

Literature:

1. Poincare A. New methods of celestial mechanics.-M.: 1971, v.1.
2. Bonschtedt A.V., Shironosov V.G. Letters in GTF, 1989,v.15, n 5, p.82. Shironosov V.G. RAS USSR, 1990, v. 314, n.2, p.316. Shironosov V.G. About stability of unstable states, bifurcation and chaos of non-linear dynamic systems (in Russian). - DAN SSSR, 1990, v. 314, No. 2, p. 316-320. Shironosov V.G. About P.L. Kapitsa's pendulum outside of and in the zone of parametric resonance (in Russian). - ZHTF, 1990, v. 60, issue 12, p. 1-7. Shironosov V.G. Resonance in physics, chemistry and biology. Izhevsk. Publ. House "Udmurtia University", 2001. 92 p.
3. Toshek P.E. UFN, 1989, v. 158, n 3, p. 451.
4. H. van der Heide, Philips tech. Rev.,1974,v.34,n 2/3,p.61. section 1.