

Измерение «Странного излучения» на установке газового разряда измерителями серии "ИГЭД-2хх"

Савватимова И.Б. Авшаров Е.М.

Москва, 2023 г.

Содержание

- 0. Постановка задачи
- 1. Экспериментальная установка и диапазон параметров изучаемого процесса
- 2. Аналитические средства оценки излучения и их возможности
- 3. Результаты измерений
- 4. Обсуждение результатов измерений
- 5. Возможные механизмы и применения
- 6. Выводы

Цель исследований:

Показать необходимость измерений интенсивности электромагнитного и неэлектромагнитного излучений для определения зоны безопасной работы с приборами и установками, генерирующими «странное излучение».

0. Постановка задачи:

Исследования последних десятилетий показали, что многие процессы сопровождаются «странным излучением», регистрируемым многими исследователями и проявляющим себя как треки на поверхности металлических образцов, рентгеновских плёнках.

Например, на образцах различных металлов после облучения их низкоэнергетическими ионами в тлеющем разряде в виде разнообразных треков, в том числе и треков как бы «спирального» движения неких частиц и на рентгеновских плёнках, расположенных внутри и снаружи разрядной камеры.

Подобные следы наблюдал М. Солин на поверхности большого объёма застывшего металла после электроннолучевой плавки.

Позднее Л.И. Уруцкоев наблюдал эти треки после «<mark>электрического взрыва вольфрамовой проволочки</mark>» на рентгеновских плёнках. «Планирую расширить»

Л. И. Уруцкоев, А. А. Рухадзе, Д. В. Филиппов, А. О. Бирюков и др. Исследование спектрального состава оптического излучения при электрическом взрыве вольфрамовой проволочки. «Краткие сообщения по физике ФИАН», 2012, 7, 13–18 →

Часто треки имели спиралеобразный вид или подобный следу от салюта.

Иногда наблюдали сдвоенную спираль или спирали, симметрично расходящиеся от одной точки.
.....

Для расширения-углубления понимания процесса было запланировано проведение ряда экспериментов, результаты, одного из которых, изложены в этом докладе.

1. Экспериментальная газоразрядная установка

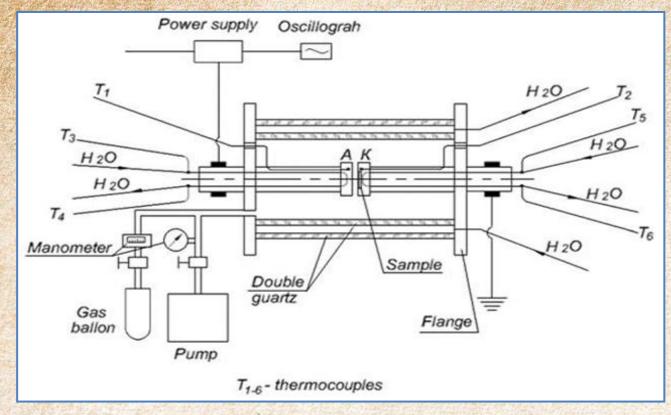
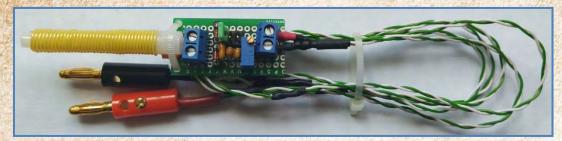


Рис.1 Схема установки газового разряда

Установка тлеющего разряда, в которой создавалась протий- и/или дейтерий-содержащая низкотемпературная плазма, включала:

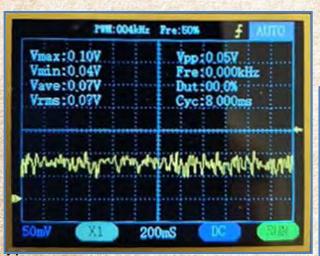
- разрядную камеру объёмом
- 2. 10⁻³ m³ с корпусом, состоящим из коаксиальных внешней и внутренней труб из кварцевого стекла, охлаждаемых проточной водой, фланцев и электрододержателей из нержавеющей стали X18H10T,

также охлаждаемых проточной водой;


систему вакуумирования, систему подачи газа, нестандартный импульсный источник питания
и осциллограф Tektronix TDS 3034C.

Регистрируемые в процессе экспериментов осциллографом Tektronix величины импульсного тока и напряжения составляли I ≈ (1 - 20) A и U ≈ (1 - 30) kV. Частота f регистрируемого тока изменялась от 50 kHz до 50 MHz. На рис. 1 приведена схема установки тлеющего разряда.

После вакуумирования разрядная камера, заполнялась плазмообразующим газом до давления (3 - 10) Торр. Разряд в Н и D среде осуществлялся в режим импульсном режиме без выхода на «активный» режим с пакетами импульсов.

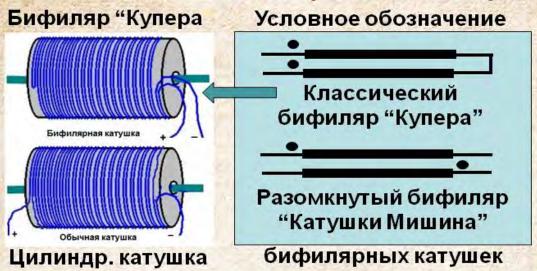

2. Измерения колебаний "физического вакуума" измерителями ИГЭД-2хх

Цифровые измерители колебаний "физического вакуума" серии ИГЭД-2 предназначены для регистрации <u>не электромагнитных</u> излучений.



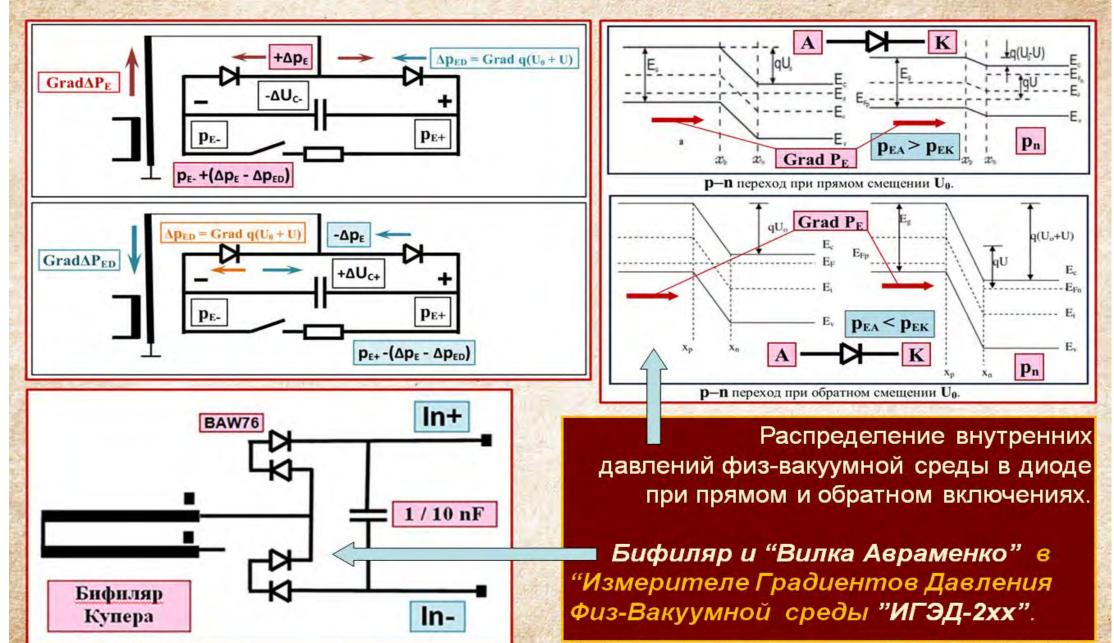
Детектором измерителей серии *ИГЭД-2хх* является "*Бифилярная катушка Купера*" с подключенной "*Вилкой Авраменко*".

Измеритель **ИГЭД-2+** на цифровом мультиметре XDM-1041 (фирма OWON) с встроенным аккумуляторным питанием.

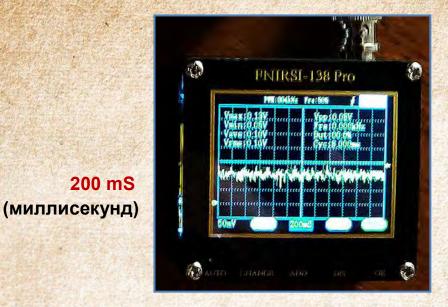


Измеритель ИГЭД-2гр с гальванической развязкой (R_{inp} входное = 50 Mom) справа и параллельным выводом на цифровой осциллограф фирмы FNIRSI-138 Pro (слева) – оба на аккумуляторном автономном питании.

"Бифилярная катушка" – первый компонент детекторов измерений колебаний давления среды физического вакуума в "Измерителях серии ИГЭД-2хх"


Переменный "электрический ток" в теле бифилярной катушки не создает "электромагнитного излучения", не возникают т.н. "магнитные полюса", характерные для обычной катушки - между соседними проводниками возникают разнонаправленные потоки физвакуумной среды, синхронно изменяющиеся вместе с направлением и амплитудой "электрического тока".

Этим порождаются разно-размерные вихревые тороидальные образования, обладающие *уникальной сверхпро-*никающей способностью.

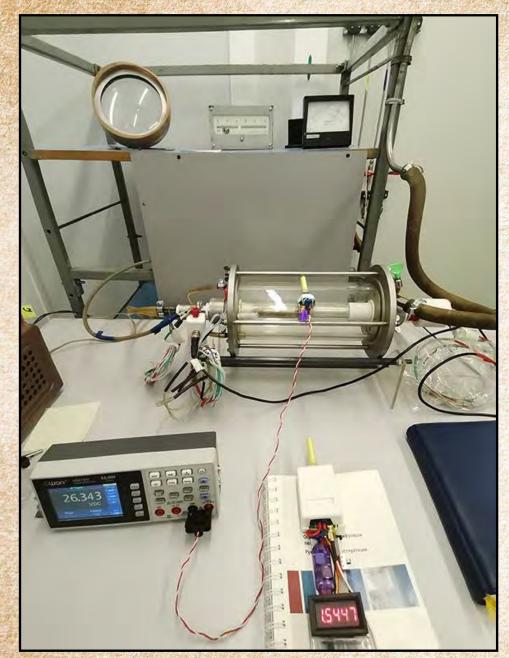

Спектральная характеристика не имеет ярко выраженной резонансной частоты, а растянута по всему спектру. Индуктивность бифиляра L=0.

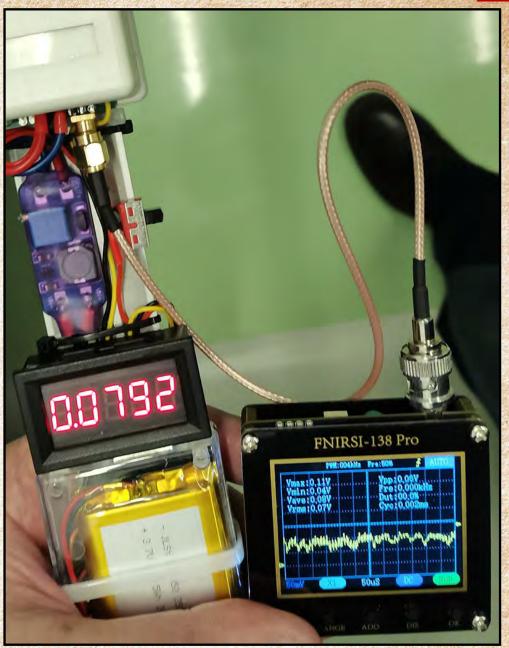
Приемная Бифилярная катушка идеально выделяет вихревые колебания среды физического вакуума.

"Вилка Авраменко" – второй компонент детекторов измерений колебаний давления среды физического вакуума в "Измерителях серии ИГЭД-2хх"

Характеристики окружающей среды на измерителе ИГЭД-2гр с гальванической развязкой.

200 mS


200 µS (микросекунд)


Показание колебаний окружающей среды "физического вакуума" («флуктуации вакуума») на выходе измерителя ИГЭД-2гр (с гальванической развязкой), находящегося в невозбужденном состоянии:

- а. Фото слева. Осциллограмма при цене деления временной шкалы 200 mS (миллисекунд),
- b. Фото справа. Осциллограмма при цене деления временной шкалы 200 µS (микросекунд), Как видно форма сигналов (белый шум) и амплитуды не имеют принципиальных отличий на 3-х порядках!

Измерения, проведенные на частотах от 0.1 Hz до ~ 1 MHz (цена деления временной шкалы от 10 S до 10 µS), показывают что во всем указанном диапазоне частот на осциллографе видна одна и та же картина колебаний сигнала как в диапазоне значимых амплитуд, так и в форме сигнала белого шума, который к концу диапазона всего лишь сглаживается частотной характеристикой электронных компонентов (предел частоты определяется верхним частотным пределом электронной компонентной базы, из которой собрана гальваническая развязка измерителя ИГЭД-2гр).

Вышесказанное иллюстрирует, что фиксируемые измерителями ИГЭД-2хх колебания "физ-вакуумной" среды вызваны ее вихревыми образованиями с широким диапазоном частот колебаний, отличающихся не менее чем на 7 порядков, даже когда сама среда находится в невозбужденном состоянии.

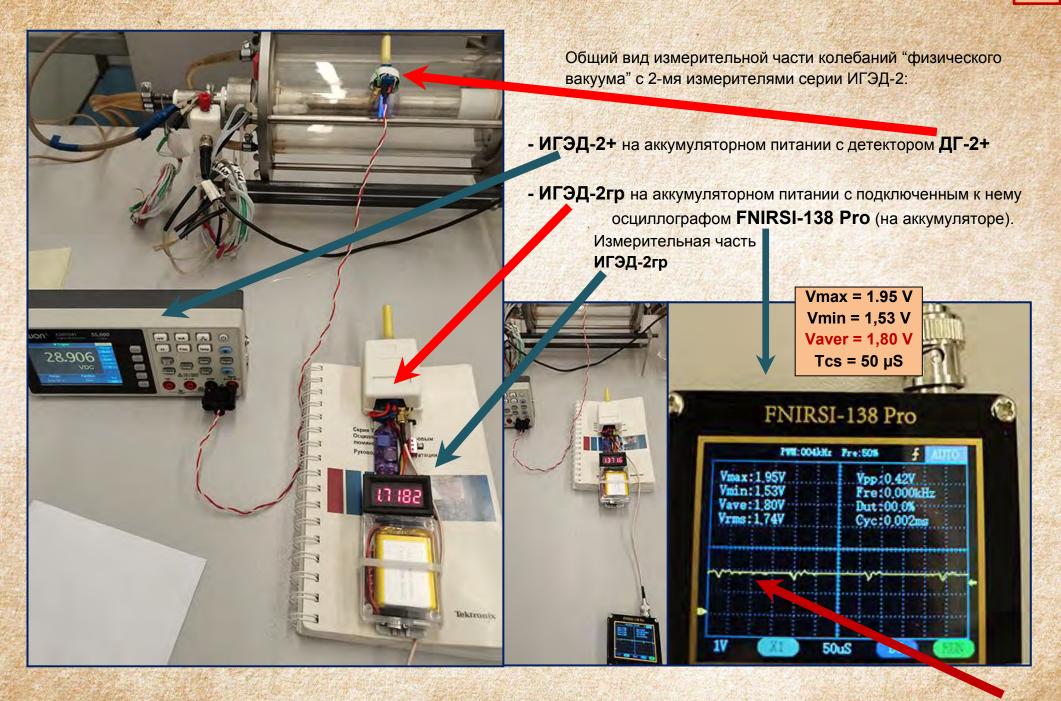
Справа - показания измерителем "ИГЭД-2гр" (<mark>0.0792V, 50 µS</mark>) колебаний окружающей среды "физ-вакуума".

3. Колебания "физического вакуума" на приборах ИГЭД-2хх на газоразрядной установке.

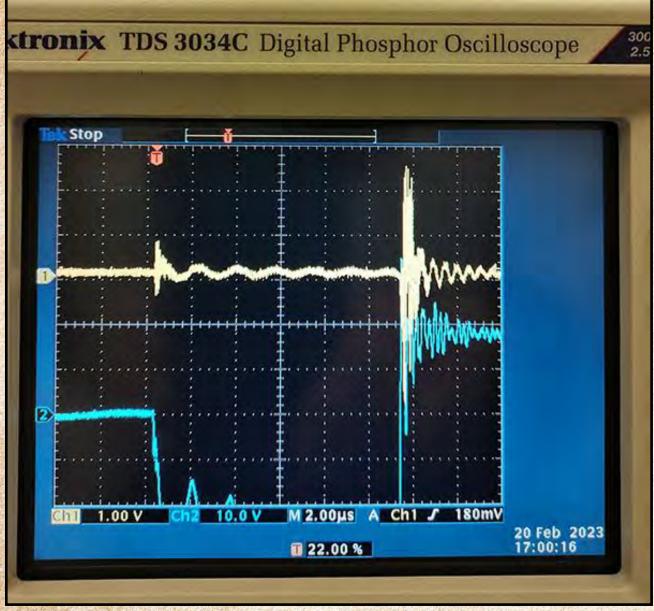
Измерения проведены 20.02.2023г.

Время	Место + информация	Уточнения		Показания ИГЭД-2гр (V)
11:47		Кабинет	На столе 3м от двери и стола - II двери / I_ двери	0.0323 0.0474 / 0.0538
	4 этаж	ICA VALUE AND	II двери / I_ двери	0.0486 / 0.0560
		Конференц. зал	На подоконнике II окну	0.0254
12:01	2 этаж лаборатория	На столе с установкой, не работавшей месяц		0.0477 / 0.0544 (II / I_ цилиндр. установке)
		Без экрана		<mark>0.0566 (Фон)</mark>
		С экраном стеклотекстолит 1.4мм+Cu0.2мм		0.0524
12:20	Детектор ИГЭД-2гр (2 этаж лаборатория)		плограмм на Finrsi-138Pro нической развязкой	$V_{max} = 0.10 \text{ V}; V_{min} = 0.04 \text{ V}; V_{aver} = 0.07 \text{ V};$

 $oldsymbol{V}_{max}$ – максимальное значение; $oldsymbol{V}_{min}$ - минимальное значение; $oldsymbol{V}_{ave}$ - среднее значение


0. Запуск охлаждающей воды на газоразрядной установке

(Давление в разрядной камере P = 0.5 мм Hg (0.5 Torr), показание дозиметра ДКГ-02У = 0.16 ± 15 мЗв/час)


Время	Место + информация	Показания ИГЭД-2+ (mV)	K _{PV} ** - увеличение над фоном	Фото
40.00	на столе у окна	1,72 ± 0,12 · (Фон)	1,0	
12:32	На наружной кварцевой трубе разрядной камеры	11,50 ± 0.50	> 6,7	
12:48	Включение потока воды (На наружной кварцевой трубе разрядной камеры перпендикулярно её оси)	231,0 ± 30	> 134 (om 1,72 mV)	206.80
	<u>Измеритель ИГЭД-2гр</u> (детектор _ оси трубы на расстоянии ~ 45 мм.)	750 ± 30 mV (гальван. развязка)	> 13,2 (~ 45 mm) * (om 0.0566 V)	

^{*} Расстояние датчика от разрядной камеры; ** K_{PV} – коэффициент увеличения над фоном (в *N* раз)

3.1. Компоненты измерения колебаний "физического вакуума" на газоразрядной установке

3.2. Показания амплитуды тока и напряжения на осциллографе установки

Пример регистрации параметров импульсов в разряде водорода:

- Ток в импульсе (канал-1):

$$(t_{imp} = ~3\mu S)$$

- Напряжение в импульсе (канал-2)

$$U_{imp} = 17.5kV$$
 (синий)

- Входное напряжение генератора

$$U_{imp} = \sim 20V$$

На фото справа - продолжение правой части импульса говорит о быстром затухании сигнала (не более 5.5µS), соответствует показаниям на осциллографе FNIRSI, после всплеска - колебания чисто "физ-вакуумные", смотри на предыдущем слайде. ^

3.3 Измерения колебания "физического вакуума" на газоразрядной установке (Н2)

Работа установки на водороде (H_2), P = 4.0mm Hg

Время	Место + информ.	Показания Tektronix	<u>ИГЭД-2+</u> К _{РV} ** увеличения	<u>ИГЭД-2гр</u> К _{РУ} ** увеличения	Фото
13:30 -:- 13:39	P=4 мм H ₂ Uвх= ~ 10В (генератор)	I = <u>0.5A</u> , U _{max} ~ <u>14 keV</u> (U=28Vx500) Freq = 5,4kHz;	18,25 V Перпендикулярно оси трубы 10610 (от 1,72 mV)	Vmax = 1.62 V Vmin = 1,14 V Vaver. = 1.38V Tcs = 50 μS (300 mm) * 24,4 (οτ 0,0566) Vave = 21 mV (500mm)	FNIRSI-138 Pro THE COORSE THE SON
13:46	P=4 mm H ₂ UBX= ~ 10B	$I = \underline{0.5A},$ $I = $	20,56 V Перпендикулярно оси трубы В 11953 раз (от 1,72 mV)	<mark>1.391 V</mark> (300 mm) * В <u>24,6</u> раз (от 0,0566 V)	20.500
13:59	(генератор)	= 0,6A; 28 B = 14 keV (U=28Vx500)	15, 68 V Параллельно оси трубы В 9113 раз (от 1,72 mV)	1.176 V (300mm) * В 20,7 раз (от 0,0566 V)	
	Датчи	<mark>к повернут на 90° по сра</mark>	внению с 13:39 и по	оказывает^ анизотр	опию" излучения

14:09	Р=4 мм Н₂ Uвх= ~ 20В (генератор) Перпендикулярно оси трубы	TORIX TOS ADAC Digital Primpour On the age	I = 3.0A , Umax~17,5 keV (U=35v x 500) Umax ~ 20 keV (U=40v x 500)	21,91 V 12738 (om 1,72 mV)	1.2163 V (300mm) * 24,6 (om 0,0566 V)	
14:13	Р=4 мм Н₂ Uвх= ~ 30В (генератор) Перпенди- кулярно оси трубы		I = <u>3,8A</u> Umax ~ <u>30 keV</u> (U=60v x 500)	27,40 V 15930 (om 1,72 mV)	1.5447 V (на 300mm) * 27,3 (от 0,0566 V)	
14:20	Измерение максимума дальности				виден ф <u>^</u>	разрядной камеры оновый «шум» - 0,08 V 1,4 раз
16:20	Питание отключено	Фон на т Фон у с		0,68 V в 395 раз 0,025 V в 14,5 раз		

^{*} Расстояние от разрядной камеры

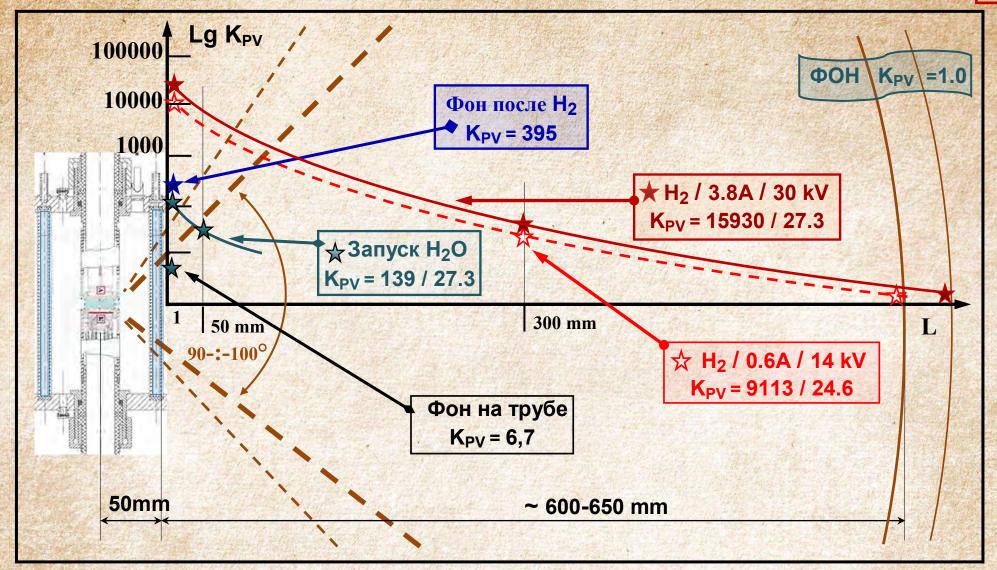
^{**} K_{PV} – коэффициент увеличения над фоном (в *N* раз)

3.4 Измерения колебания "физического вакуума" на газоразрядной установке (D)

Работа установки на дейтерии (D), P = 4.5 mm Hg

Время	Место -	+ информ.	Показания Tektronix	<u>ИГЭД-2+</u> К _{РV} ** увеличения	<u>ИГЭД-2гр</u> К _{РV} ** увеличения	Фото
16:25	U вх= ~ 10В (генератор)			18,75 V B 10901 pas (om 1,72 mV)	0.620 V (300mm) * В <u>10,9</u> раз (от 0,0566 V)	
16:30	U вх= ~ 15В (генератор)			20,4 V B 11860 pas (om 1,72 mV)	0.690 V (300 mm) * В <u>12,2</u> раз (от 0,0566 V)	
16:51	U вх= ~ 20В (генератор)	TORS 3034C Digital Phosphor Oscilloscope	I = <u>2,6A</u> Umax ~ <u>12,5 keV</u> (U=25v x 500)	23,08 V B 13506 pa3 (om 1,72 mV)	<mark>0.788 V</mark> (300 mm) * В <u>13,9</u> раз (от 0,0566 V)	23.084
17:10	U вх= ~ 25В (генератор)	1300 00 1111 03.090 N OH 7 180 20 18 18 20 20 18 30 20 20 20 20 20 20 20 20 20 20 20 20 20	I = <u>2,8A</u> Umax ~ <u>17,5 keV</u> (U=35v x 500)	28,8 V B 16744 pa3 (om 1,72 mV)	1.680 V (300 mm) * В 29,6 раз (от 0,0566 V)	

17:21	U вх= ~ 30В (генератор)	ronix TDS 3034C Digital Phosphor Oscilloscope	I = <u>3,0A</u> Umax ~ <u>16 keV</u> (U=32v x 500)	26,54 V B 15430 pa3 (om 1,72 mV)	. <u>1.553</u> V (300 mm) * В <u>27.4</u> раз (от 0,0566 V)	S533
17:24	U вх= ~ 30В (генератор)	AIronix TDS 3034C Digital Phrsphor Oscilloscope	I = <u>2,3A</u> Umax ~ <u>21,0 keV</u> (U=43v x 500)	28,90 V B <u>16800</u> pa3 (om 1,72 mV)	<mark>1.718 V</mark> (300 mm) * В <u>30.4</u> раз (от 0,0566 V)	10 102


^{*} Расстояние от разрядной камеры ** Кру – коэффициент увеличения над фоном

3.5 Измерение параметров "физического вакуума" с водой:

Время	Режим	Фото	Вид воды	ИГЭД-2+
	<mark>Датчик на</mark>		Вода из установки	<u>1,620</u> mV
17:50	стакане с водой у окна		Вода Дистиллят	<u>1,460</u> mV
	Установка выключена	/// № 11.0mV	Вода из водопровода	<u>1,468</u> mV

4. Зона распространения и КРУ (увеличения фона) на газоразрядной установке

Измерения на установке показали, что распространение излучения происходит симметрично в растворе цилиндрического конуса с углом раскрытия приблизительно в 90°-110°, из области, где происходит разряд. Водяная рубашка частично поглощает излучение в пределах ~ 20% от основного потока излучения, которое было выявленное в измерениях, проведенных вне настоящей презентации.

- 0. При измерении обнаружено излучение на поверхности кварцевой трубы, <mark>превышающее фон колебаний окружающей среды</mark> "физ-вакуума", более чем в 10 раз, при том, что установка не включалась более 1-го месяца.
- 1. Обнаружено излучение при впуске охлаждающей воды газоразрядной установки превышение фона колебаний окружающей среды "физ-вакуума" на поверхности кварцевой трубы ~ в 140 раз, и на расстоянии в ~ 40 мм в 27 раз.
 После эксперимента с разрядом в среде водорода превышение фона составило более, чем 390 раз, что говорит о том, что кавитационные процессы, происходящие в охлаждающей воде, возрастают.
- 2. При работе установки на Водороде (H₂) и Дейтерии (D) регистрировалось чрезвычайное превышение излучения на поверхности кварцевой трубы, превышающее фон колебаний окружающей среды "физ-вакуума" от 10 до 16 тысяч раз! при питании установки от 10 до 30 вольт переменного тока, и на расстоянии ~ 300 мм от кварцевой трубы от 24 до 27 раз! Надо отметить что на расстоянии порядка ~ 600-:-650 мм от кварцевой трубы установки в процессе горения разряда в водородо- и дейтерий-содержащих средах колебания, регистрируемые как не электромагнитные излучения, не превышали фоновые происходило быстрое падения амплитуды колебаний.
- 3. При работе установки на Дейтерии (D) также регистрировалось чрезвычайное превышение излучения на поверхности кварцевой трубы газоразрядной установки, превышающее фон колебаний окружающей среды "физ-вакуума" от 10 до ~17 тысяч раз! при питании установки от ~10 до ~30 вольт.
- 4. Анализ показывает гораздо бОльшую зависимость амплитуды колебаний среды "физ-вакуума" от амплитуды напряжения и остроты импульса, чем от величины тока импульса, что указывает на зависимость градиентов давления "физ-вакуумной" среды от электрического напряжения, т.е. интенсивности колебательных процессов в этой среде, от напряжения импульса, пропорционального градиентам давления в этой среде.
- 5. Опыт работы с измерителями серии "ИГЭД-2хх" показывает, что любой электрический разряд в газообразной, жидкой или твердой материальных средах приводит к возникновению колебаний и излучений "физ-вакуумной" среды.
- 6. Для работы с разрядными установками необходимо исследовать биологическое воздействие на объекты типа "планарии", или другие, располагая их в зоне регистрации излучения "физ-вакуума". Только после проведения полномасштабных исследований воздействия излучений на биологические объекты, а так же и защиты от них, должны приниматься нормативы для работы на установках с разрядами в материальных средах.

Литература

- 1. Karabut A.B., Kucherov Ya.R., Savvatimova I.B. "Nuclear product ratio for glow discharge in deuterium".

 Physics Letters A, 170, 265-272 (1992). www.lenr-canr.org/acrobat/KarabutABnuclearpro.pdf
- 2. I. Savvatimova, Ya.Kucherov and A. Karabut, "Cathode Material Change after Deuterium Glow Discharge Experiments,"
 Transaction of Fusion Technology (December 1994); Forth International Conference on Cold Fusion,
 December 6-9, 1993: v.26, number 4T(1994):ISSN:0748-1896, pp. 389-394. www.lenr-canr.org/acrobat/EPRlproceedingb.pdf
- 3. Savvatimova I.B. // J. Condensed Matter Nuclear Sci.2012. V. 6. P. 181. www.iscmns.org/CMNS/JCMNSVol6.pdf
- 4. С. Ф. Тимашев, И. Б. Савватимова, С. С. Потешин, С. М. Рындя, Н. И. Каргин. ИНИЦИИРОВАНИЕ ИСКУССТВЕННОЙ РАДИОАКТИВНОСТИ ПРИМЕСНЫХ ЭЛЕМЕНТОВ В СВИНЦОВОМ КАТОДЕ В УСЛОВИЯХ ТЛЕЮЩЕГО РАЗРЯДА Журнал физической химии 2023, т97_7, стр. 915-924.
- 5. Тимашев С.Ф., Савватимова И.Б., Потешин С.С., Сысоев А.А., С. М. Рындя, Н. И. Каргин. Физика элементарных частиц и атомного ядра. 2022. Т. 53. Вып. 1. С. 110. https://doi.org/10.1134/S1063779622010051
- 6. Авшаров Е.М. "Измеритель Градиентов Эфирного Давления поколения ИГЭД-2 и ИГЭД-2(гр)":
 http://www.course-as.ru/AEM_GE/AEM_GED.html#MGEP-2; http://www.course-as.ru/AEM_GE/AEM_MGEP-RT.pdf
- 7. Авшаров Е.М. "Демонстрация возможностей эфиродинамических измерителей серии ИГЭД-2":
 http://www.course-as.ru/AEM_GE/AEM_GED.html#MGEP-D; http://www.course-as.ru/AEM_GE/AEM_Protdemo-IGED.pdf
- 8. Авшаров E.M. "Измерения колебаний эфирной среды вокруг водяной кавитационной тепловой установки "iWET":
 http://www.course-as.ru/AEM_GE/AEM_GED.html#MGEP-CAV; http://www.course-as.ru/AEM_GE/AEM_Cavit-Meas.pdf
- 9. "Градиентная Эфиродинамика" http://www.course-as.ru/AEM_GE/AEM_GED.html

Измерение
«Странного излучения»
газоразрядного лазера
измерителями серии
"ИГЭД-2L"

Авшаров Е.М., Ягужинский Л.С.

Москва, сентябрь, 2023г.

Измерение колебаний "физ-вакуумной" среды при воздействии Не-Ne лазера на воду

Предметом исследования и измерений является неизвестное "странное излучение" He-Ne газового лазера, накачка которого производится электрическим разрядом в смеси газов под давлением 2.5 mm Hg (2.5 Topp).

Рис. 1. Лазер с датчиком

Для измерений использовался гелий-неоновый лазер с длиной волны **633 nm** (красный) мощностью **5 mW** (рис. 1), расположенного на расстоянии ~**180 mm** от поверхности воды.

Воздействие производилось на воду (бидистиллят) объемом **20 ml** и высотой столба **35 mm**, расположенную внизу герметичной пластикой цилиндрической пробирке, предназначенной для биохимических исследований (рис. 2).

Луч лазера проходил через прозрачную донную часть цилиндра в воду. Вокруг (вне) цилиндрической части пробирки, расположена бифилярная катушка датчика, подключенная к его электронной части – "Вилке Авраменко" – с выводом на коаксиальный разъем.

Датчик измерителя подключен к мультиметру OWON XDM-1041 со встроенным аккумуляторным питанием (рис. 2).

Рис. 2. Датчик.

Рис. 3. Мультиметр XDM-1041 измерителя ИГЭД-2L с кабелем (показание при работе лазера = 1,1689 V).

От **He-Ne** лазера идет расходящийся конический поток физ-вакуумных колебаний. От центральной части этого потока, идущего вдоль оси лазерного луча, происходит резкое падение показаний измерителя вдоль радиуса по мере удаления от оси, а на радиусе ~125 mm колебания физ-вакуумной среды возвращаются к фоновым значениям.

Результаты измерения "странного излучения" He-Ne лазера 633 nm, 5 mW. (МГУ, НИИ физико-химической биологии, каб.429, 25.09.2023г.)

На рис.4. представлен график показаний измерителя *ИГЭД-2L* с датчиком измерения колебаний "физ-вакуума" воды под воздействием излучения **He-Ne** лазера. K_{PV} - коэффициент превышения излучения фонового значения.

Рис. 4. График зависимости излучения Не-Ne лазера от цикла включения и погодных условий среды.

Результаты измерения "странного излучения" полупроводникового лазера.

Предметом измерений является неизвестное "странное излучение" полупроводникового лазера, по сравнению с излучением **He-Ne** газоразрядного лазера, описанного выше.

На рис. 5. показан полупроводниковый (п/п) лазерный излучатель, созданный на базе лазерного модуля SYD1230, 650 nm, 5V, 5 mW, работает в непрерывном или импульсном режиме от генератора сигналов (5V_{PP}) через коаксиальный разъем, под управлением разработанной электронной схемы.

Измерение показало что К_{РV} полупроводникового лазера при непрерывном режиме работы не превышает 12-15%, т.е. коэффициент превышения К_{РV} <= 1.15.

В этом излучение п/п лазера принципиально отличается от газоразрядного лазера, у которого неизвестное "странное излучение" имеет К_{РV}, превышающее фоновое среды в ~ 300 раз !!

Рис. 5. Лазерный п/п излучатель.

Исследования, проведенные с газоразрядным лазером, а также предыдущие исследования автора, подтвердили вывод о том, что:

любой электрический разряд в газообразной, жидкой или твердой материальных средах приводит к возникновению колебаний и излучений "физ-вакуумной" среды.

На первый план выходит необходимость исследования воздействия выявленных "странных излучений" при газоразрядных процессах на биологические живые организмы типа "планарии" или "рыбных икринок" для адекватного видения опасных пределов интенсивности вышеописанных излучений.

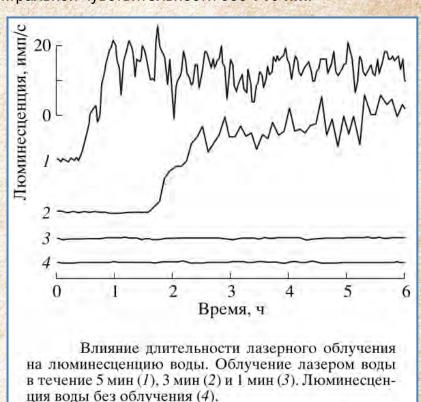
^{1.} Измерение «Странного излучения» газоразрядного лазера – http://www.course-as.ru/AEM GE/AEM GED.html#MGEP-Laser

^{2.} Измеритель Градиентов Эфирного Давления "ИГЭД-2xx" - http://www.course-as.ru/AEM GE/AEM GED.html#MGEP-2

Люминесценции воды после воздействия Не-Ne газоразрядного лазера

Брусков В.И., Ягужинский Л.С. с соавторами в статье 2009 г. - "Автоколебательный процесс люминесценции воды, индуцированный лазерным облучением", представили результаты воздействия на воду газоразрядного He-Ne лазера,

(Институт теоретической и экспериментальной биофизики Российской Академии наук, Пущино Московской обл. Федеральное Космическое агентство, Москва. Институт физико-химической биологии им. А.Н. Белозёрского МГУ им. М.В. Ломоносова, Москва.)


Облучение 10 ml бидистиллированной воды проводили в полипропиленовых флаконах с помощью гелий-неонового лазера ЛГН 208А (632.8 nm, 1.7 mW) в темноте при комнатной температуре, расстояние от лазерной трубки до поверхности воды = 30 мм, измерение люминесценции хемилюминометром Биотокс-7А 2М, диапазон спектральной чувствительности 380-710 nm.

Задержанные химические процессы, порожденные облучением воды лазером, под воздействием которого в водных растворах, насыщенных воздухом при нормальном атмосферном давлении, происходит образование активных форм кислорода (**АФК**),

При этом было обнаружено, что при кратковременном облучении воды лазером в ней возникают химические процессы, которые со временем переходят в колебательный процесс рождения перекиси водорода (H_2O_2) и ее обратной диссоциацией с распадом перекиси водорода H_2O_2 обратно в воду (H_2O), сопровождающих колебательный режим люминесценции.

С помощью специфического флуоресцентного зонда было показано, что при воздействии этих факторов на воду происходит образование гидроксильных радикалов (**OH**") и увеличение их генерации при повышении **рН**, при освещении лазером образуется синглетный кислород, который окисляет гидроксил-ион с образованием **OH"-** и **O**, - радикалов и затем перекиси водорода.

В пользу существования кавитации воздушных пузырьков под воздействием света свидетельствуют процессы активации молекул азота, растворенного в воде, приводящие к накоплению в воде окислов азота и уменьшению содержания микропузырьков воздуха.

Использование полупроводникового лазера (5.0 mW, 633 nm) не выявило полученных ранее эффектов, поэтому возникла острая необходимость проверки, с помощью новых датчиков для "не электромагнитных измерений" серии "ИГЭД-2хх", различие между газоразрядными Не-Ne лазерами и полупроводниковыми, имеющими одинаковые выходные характеристики светового лазерного луча, результаты измерений воздействия обоих лазеров приведены на страницах выше.