

Поиск новой заряженной частицы в интервале массы 2–100 МэВ

М. Х. Аникина, В. А. Никитин, В. С. Рихвицкий

Лаборатория Физики Высоких Энергий им. В.И. Векслера и А.М. Балдина ОИЯИ

В теории электрослабых взаимодействий отсутствует запрет на существование частиц с массой, отличной от массы электрона, мюона и тауона. В период 1960–1972 гг. в разных лабораториях был выполнен поиск неизвестных заряженных частиц.

Данный доклад относится к этому классу исследований [1]. Авторы предположили закономерность распределения масс лептонов, аппроксимирующую распределение массы известных частиц e, μ , τ (электронов, мюонов, тауонов). Эта закономерность указывает на возможность существования нового состояния («тяжелого» электрона) с массой 8 МэВ. Теоретическое предсказание существования новой частицы дало повод для проведения экспериментальных исследований в этом диапазоне энергий.

Экспериментальный поиск новой частицы выполнен на фотоматериале двухметровой пропановой пузырьковой камеры В 1960-е гг. камера была облучена на синхрофазотроне ЛВЭ ОИЯИ протонами с энергией 10 ГэВ. Размер области пузырьковой камеры, доступный наблюдению в стереолупу и на просмотровом столе, составляет $105 \times 60 \times 40$ см. Камера находится в магнитном поле напряженностью В \approx 1,5 Тл. пропана λ rad = 104 см. Пучковый протон взаимодествует с нуклонами молекулы пропана. В результате реализуется множественное рождение частиц. В основном это нуклоны и пионы. Нейтральные пионы распадаются на γ -кванты, которые конвертируют в пропане парузаряженных частиц. В основном это пары e+, e-. При просмотре фотоматериала отбираются события рождения пар частиц γ -квантами: $\gamma \to 1-+1+$, в которых хотя бы одна частица останавливается в просматриваемом объеме и имеет повышенную оптическую плотность (почернение) вблизи последней видимой точки.

Для поиска новой частицы просмотрено \sim 55 тыс. стереофотографий с пузырьковой камеры. Анализируются события конверсии γ кванта в пару заряженных частиц. Найдены 47 аномальных событий, в который отдельная частица такой пары при идентификации обнаруживает массу \sim 8 МэВ. При этом среднее значение массы новой частицы оставляет (8,6 \pm 3,0) МэВ.

[1] М.Х.Аникина, В.А.Никитин, В. С. Рихвицкий, Поиск новой заряженной частицы в интервале массы 2–100 МэВ, препринт ОИЯИ https://disk.yandex.ru/i/xvKownIYAQroaA