"МИС-РТ"-2021 Сборник №76-1-16-2 http://ikar.udm.ru/mis-rt.htm

УВ в неравновесной плазме и LENR

(к юбилею Н.В. Самсоненко)

Климов А.И.

Москва, 19.05.2021. Вэбинар Зателепина

Часть 1

БЫСТРОЕ ОСТЫВАНИЕ ГП НА ВЫХОДЕ ПВР

Схема калориметрического эксперимента на установке ПВР.

1-кварцевая труба, 2- завихритель, 3,4- электроды, 6- клапан, 7- расходомер, 8- компрессор,9,10- источник питания, 17- термопара,18-20- теплообменник

Режим изучения охлаждения выходного газового потока на ПВР с помощью длиной измерительной трубки (1) диаметром 20мм и длиной 1000мм. 1-измерительная кварцевая трубка (теплообменник), 2- выходное сопло, 3-основной рабочий кварцевый канал диаметром 20мм, 4- зивихритель, 5- осевая подача газа, 6- В/В делитель, 7-тангенциальная подача газа, 8-инжектор пара

🔹 Тпрямой, °C 🛛 🔹 Тобратный, °C ······· Линейная (Тпрямой, °C) ······ Линейная (Тобратный, °C)

roopanto

Часть 2

ЭНЕРГОВЫДЕЛЕНИЕ ЗА УВ В СНП (НЕЗАСЛУЖЕННО ЗАБЫТЫЙ МАТЕРИАЛ)

MPA. <u>1978</u>-1980. Effect of Weakly Ionized Plasma on Flow Around Sphere

Ioffe Institute Ballistic Range Tests Showing Effects of Ionization Velocity = 2000 m/s, Pst~ 40-200Torr, HFD, DC

With Pre-ionization

Схема экспериментальной установки УТ-1.

1- камера низкого давления; 2- диафрагменный блок; 3- РС (разрядная секция); 4демпфирующая секция; 5- камера высокого давления; 6- лазер; 7- баллон со сжатым газом; 8- фотоприемник; 9- МДР-23; 10- пьезодатчики; 11- электроды

В экспериментах на УТ в рабочей секции трубы получался поперечный ИР со следующими характеристиками:

•средняя плотность тока $j_d \leq 40$ мА/см²,

•время горения разряда <mark>t_{гор} ≤</mark> 1 мс,

•длительность импульса разряда $\tau_p \sim RC \approx 0.1 \div 1 \text{ с,}$

•исследуемый газ - азот, аргон, воздух, начальное давление Pst ≤ 30 Top.

В указанном ИР при малых временах t_{гор} удалось свести к минимуму нагрев газа в разряде, а также можно было легко контролировать величину энергии, вложенную в разряд. При малых величинах удельного энерговклада q в разряд:

где ho- начальная энтальпия газа,

ј - средняя плотность тока в разряде,

Е- средняя напряженность электрического поля,

можно свести к минимуму роль детонационных процессов в возбужденном газе и выявить роль специфических плазменных механизмов, влияющих на эволюцию и структуру УВ в СНП.

Использовались плоские УВ со скоростями $V_0 = 400 \div 1500$ м/с..

Распределение газовой температуры в поперечном ИР на УТ-2 воздух, 6 Тор, j= 30 мА/см²

Электронная концентрация $N_e \sim 2.\ 10^{11}\ cm^3$ Электронная температура $T_e = 1-2\ эB$ Параметр E/P при Po< 3 Topp 10÷20 B/cм Торр при Po> 6 Topp 5÷ 8 B/cм Topp

Структура УВ в СНП. 1978-1980

t, мкс

20мкс/см

Фоторазвертки движения УВ в СНП в воздухе : - ИР, P_0 = 30 Тор, $j_p \approx 100$ мА/см², $t_{rop} \le 1$ мс; M₀~2.

1- предвестник, 2- основная волна, 3- контактная поверхность (плазма- холодный газ)

УВ в плазме ИР, Р_{ст}=12 Тор, ј~ 30 мА/см², t_{гор}~ 1мс (справа), t_{гор}~ 0,2 мс (слева), V₀=1250 м/с, катод – внизу

Эволюция УВ в СНП ИР на УТ-2. Распределение плотности за УВ:

В плазме (вверху), 1- X= 50 мм, 2- X= 75 мм, 3- X= 100 мм, 4- X= 125 мм. В воздухе за плазменной областью (внизу), 1- X*= 0 мм, 2- X*= 25 мм, 3- X*= 50 мм, X* отсчитывается от дальнего конца плазменной области

Структура УВ в СНП поперечного разряда

Рис. 4.3.4. Эпюры плотности (а) и давления (в), X= 150 мм, Z= 30 мм, P_{ст}=12 Тор, j~ 30 мА/см², t_{гор}~ 1мс, воздух, V₀=1250 м/с, 1- без плазмы, 2- в плазме

147 Рис. 3.1. Течение в трубе с под-

водом теплоты.

Основные уравнения стационарного одномерного течения с подводом теплоты отличаются от течения без подвода теплоты только аддитивным членом в уравнении сохранения энергии и имеют вид: уравнение неразрывности

$$\rho_2 u_2 = \rho_1 u_1; \tag{3.1}$$

(3.2)

уравнение импульсов

$$p_2 + \rho_2 u^2_2 = p_1 + \rho_1 u^2_1;$$

уравнение энергии

$$\frac{u^2_2}{2} + i_2 = \frac{u^2_1}{2} + i_1 + q.$$
 (3.3)

$$\frac{u_{2}}{u_{1}} = \frac{1}{M_{1}} - \frac{1}{\kappa + 1} \frac{1}{M_{4}} \left[(M_{1}^{2} - 1) \pm \frac{1}{2} + \frac{1}{M_{4}} \left[(M_{1}^{2} - 1) \pm \frac{1}{2} + \frac{1}{M_{4}} \left[(M_{1}^{2} - 1) \pm \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left[(M_{1}^{2} - 1) \pm \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left[(M_{1}^{2} - 1) \pm \frac{1}{2} + \frac{$$

реакнии

уравнений (3.4). Параметром является безразмерная величина подведенной теплоты

$$Q_1 = q/(c_p T_1),$$
 (3.5)

которую иногда называют числом Дамкелера. Если учи-

		VB. Dec
	5 D ₂ B OI II I	
		плазмы
3,5	1,7	4,73
1,73*	2,41*	
10÷ 14	2,42÷ 3	21,4
1600	1000	1500
1800*	1260*	
4,6	-	4,3
5,2*		
	УВ ₁ в СНП 3,5 1,73* 10÷ 14 1600 1800* 4,6 5,2*	$yB_1 \ B \ CH\Pi$ $yB_2 \ B \ CH\Pi$ $3,5$ $1,7$ $1,73^*$ $2,41^*$ $10 \div 14$ $2,42 \div 3$ 1600 1000 1800^* 1260^* $4,6$ - $5,2^*$ -

Соответственно, для УВ₁ и УВ₂ имеем $q_1 = 4,2 h_1 = 1,5$ кДж/г, $q_2 = -0,42 h_2 = -1,3$ кДж/г при γ , c_p - const. В нашем эксперименте q< 0,34 h_0 = 0,34 $C_{p0}T_{g0}$

Parameters of P:

Parameters	P	SWo	
ρ_2/ρ_1	1,07	1,76	
P_2/P_1	1,46	2,25	
V,mps	1000	500	
Q/CpT	0,26	0	

$$\rho_1/\rho_2 = 1 - [(\gamma + 1)M^2]^{-1} \{ (M^2 - 1) \pm \sqrt{(M^2 - 1)^2 - 2(\gamma + 1)q/C_pT} \}$$

Namely sign (-) corresponds to experimental results!!

P is plasma condensation wave(?)

Present theory does not describe these peculiarities of cold non equilibrium plasma, created by pulse discharge.

Для УВ₁ измеренное значение скорости V₁ лишь немного превышало значение, рассчитанное по известной формуле [6]:

m/s

m/s

Часть 3

ГИПОТЕЗЫ И ВЫВОДЫ

Выводы

- 1. Экспериментальные результаты на ПВР и УТ имеют взаимную корреляцию по энерговыделению в пространстве
- Были сделаны предположения, что процесс энерговыделения в плазменных потоках может быть связаны со специфическими процессами «плазменной конденсации, ПК» с образованием заряженных возбужденных нано-кластеров, их зарядкой и рекомбинацией заряженной компоненты в ГП
- 3. Процессы взаимодействия протонов (ионов водорода) с этими кластерами являются основой LENR

Спасибо за внимание