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ABOUT PENDULUM P.L. KAPITSA OUTSIDE 

AND IN THE AREA OF PARAMETRIC RESONANCE 

V. G. Shironosov

Based on the resonant theory of dynamical Poincare systems, the motion is studied P.L. 

Kapitsa's inverted pendulum with a vibrating suspension point outside and in the zone of 

parametric resonance. General formulas for finding periodic motions and studying their 

stability without assuming smallness are obtained in an analytical form. Amplitudes of the 

oscillating pendulum. 

Using the example of two types of solutions (stable (2: 1) and unstable (1: 1)), we 

obtained in the analytical form, the conditions for the occurrence of chaos and bifurcation 

points 2:1 <> 1:1 for inverted pendulum. 

The importance of studying the dynamic stability of unstable states is noted nonlinear 

systems like a pendulum outside and in the zone of linear parametric resonance for holding 

and trapping atomic particles in electrodynamic traps. 

The problem of the dynamics of a pendulum with a vibrating suspension point for a 

long time attracts attention [
1-13

]. This is due to the fact that the corresponding equation as a 

model 

it is quite often found in various fields of physics: mechanics, electrodynamics, plasma 

physics, etc. In particular, for  , где а0, where a0 is the 

acceleration of gravity, a1(-1) is the amplitude of the longitudinal (transverse) vibration, I is 

the length of the pendulum, for a particle with an intrinsic magnetic moment 

where T is the moment of inertia, H0 is the intensity of the constant magnetic field, and H1(-1) 

is the amplitude of the variable of the longitudinal (transverse) pumping magnetic field, 

. For small deflection angles x and e-1=0, equation (1) reduces to the 

well-known hurray to Mathieu's theory, which admits a stable state of an inverted pendulum 

outside the zone of parametric resonance. In 1950, P. L. Kapitsa [
2
], using the 

approximate solution method, described and experimentally demonstrated this effect. Based 
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on numerical modeling, the authors of [
12

] found stable parametrically excited oscillations of 

an inverted pendulum in the resonance zone. Later, [
1, 7

], the corresponding dependences of 

the oscillation amplitudes on s0, e1 were obtained. 

In addition to the above, many other non-trivial solutions were considered: vibrational, 

vibrational-rotational [
1,2, 7, 11 , 12

]; the emergence of chaos [ 
8,10

], etc. The search for solutions 

(1), as a rule, for various cases was carried out using various methods (Cesari [
4, 6

], Krylov-

Bogolyubov [
11

], through action-angle variables [
8
], etc. [

14, 15
] with the expansion of sin x, 

cos x in a series in powers of smallness x. Such a variety of methods made it difficult to 

stitch together particular solutions, interpret the obtained results, and understand the causes 

of chaos and bifurcations in systems described by equations of type (1). 

Therefore, given the two provisions of Poincare [
13, 75

] that ". . . periodic solutions are 

the only breach through which we could try to penetrate into an area that was considered 

inaccessible "(I) and that". . . The periodic solution can disappear only by merging with 

another periodic solution ", that is,". . . Periodic solutions disappear in pairs like the real 

roots of algebraic equations "(II), we use a generalization of the corresponding methods to 

find and study the stability of periodic solutions (1) from critical points of the action function 

[
13, 16-23

]. 

To do this, we rewrite equation (1) in Lagrangian form 

 

In the general case, x can be a vector and We will seek a solution to (2) 

near a periodic solution at a frequency in the form of a series 

 

where x0, xn, yn in the general case f (x).  

Given the dependence x, x = f (xk, yk, xk, yk), we can obtain the following shortened 

equations in the approximation of slowly varying amplitudes xk, yk for the period : 
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When deriving (6), the formulas were taken into account 

 

and conditions for the extremality of the action function (2). In the amplitude – phase 

variables, equations (6) take the form 

 

In action-angle variables 

  

It is easy to show that, to a first approximation, the Krylov – Bogolyubov method I
11

,
14

] 

and the S-function method for η = 1 lead to the same shortened equations for r1 and φ1. To 

do this, it is sufficient to substitute (6) into (15) and take into account the equalities 

The parameter 

of smallness in both cases will be the relative frequency detuning [
11, ° , 170

]. 

An improved first approximation, similar to [
11

], can be obtained from the equilibrium 

condition  

 

 Substituting (3), (5) into (18), we obtain 

  

where in a first approximation  
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We return to equation (1), we will seek a solution in the form (13), using the 

representation formulas (13) и [
24

] 

   

where Jk (rn) — Bessel functions,  — Kronecker symbol. 

Often, as experience shows, it is sufficient to limit oneself to the contribution to S (22)  

of several terms, in particular, of n = 1. This is quite sufficient for practical calculations 

without significant loss of accuracy [
25

], since series (22) quickly converges due to the well-

known property of Bessel functions to rapidly decrease with increasing index for a fixed 

value of the argument rn.  

In the general case , the convergence of the series (5) will be determined by the 

boundedness of the functions under the integrals (19), (20).  

The search for periodic solutions of equations of type (1), as follows from (6), (13), 

(16), reduces to  finding and investigating the stability of critical points (22) with 

respect to or  

We consider various cases of solutions of (1). In the simplest case of a mathematical 

pendulum without taking into account friction and vibrations, the results of calculations (13) 

for S (22) with n=1 

 

quite satisfactory accuracy. The relative error of approximation a (r1) even at angles of 

deviation of the pendulum x =160 ° does not exceed 5.5% [
11,0,55

] 

The introduction of longitudinal vibration, as follows  

 

and (13), leads to the appearance of two types of critical points. The first correspond to 

the equilibrium positions , the second -   - 

odd) , n = 0, 1,2,. . . (in particular, x0 = +- (2n + 1) when no = 0).  

Therefore, taking into account the scenario of “merging” of two periodic Poincaré 

solutions (II) due to the presence of the second type of critical points  

(bifurcation of the period ), we will seek a solution to the problem of the 
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From the first bracket (36) we obtain an estimate of the upper boundary of the stable 

solution , from the second - |, which is in agreement with the 

results obtained earlier by other methods for the Kapitsa pendulum outside the zone 

of parametric resonance [
2, 15

]. 

In the case from the conditions we can be 

obtained 

Kapitsa pendulum outside and in the zone of parametric resonance in the form 

 

 Such a representation (16) gives the expression S (22) up to п=2 

  

Restricting ourselves to terms of order in the expansion of  (26) and using 

the variables xk, yk (14), we obtain 

  

Substituting S (26) in (7), for in we obtain the 

corresponding equations for finding the equilibrium points and the characteristic roots  

 

In the case х1=у1 = 0 expressions (32), (33) are identically 0 and 
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where are expressions in square brackets (34). 

It follows from (38) that there are two stable states of motion of the Kapitsa pendulum 

in the zone of parametric resonance differing 

from each other only by changing the sign of . The result with was 

previously obtained by the Krylov – Bogolyubov method [
1p,281

] without taking into account 

and the corresponding stability analysis.  

This approach is not correct, since dropping the terms with x2, y2 in (25) at the 

frequency of the perturbing force leads, as follows from (34), (35). To the incorrect 

conclusion about the instability of the excited oscillations of the Kapitsa pendulum in the 

resonance zone with respect to x0 , y0, which contradicts the experiment and the results of 

numerical simulation [12]. 

In the simplest case with , the bifurcation point is found from a joint 

consideration of two periodic solutions according to scenario (II). Carrying out calculations 

similar to (31) - (38), near the equilibrium point x0 = + (2 «-) - 1) π / 2, x1 - y1 = y0 ^ = 0

, we obtain 

  

Periodic solutions with are unstable with respect to x0, y0 , since 

. Solving together (37), (42), one can determine the corresponding bifurcation 

point from the condition (see pic.) 

 

In this case , the appearance of bifurcation can simultaneously lead to chaos in 

system (1) (see figure). The reason may be fluctuations, errors from the macro-system used 

in the physical, analog or numerical modeling of the deterministic system described by 

equation (1). As a result, cascades of transitions between different types of periodic motions 

at  (vibrational 1: 2, 1: 1; rotational 1: 1, etc.), which are perceived as chaos, will be 

observed. 
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Machine simulation of equation (1) at the ACWC GVS of the «Rusalka» hot water 

heater and full-scale simulation on a magnetic needle from a compass placed in a magnetic 

field confirmed the correctness of the results obtained within the limits of modeling errors. 

At the end of his work [
2
] P.L. Kapitsa noted that the orienting moment’s arising from 

vibrational processes escaped the attention of physicists, so it would be interesting to raise 

the question of the possibility of observing the orienting effect of the vibrational moment on 

particles "and the molecules. 

 

The scenario of the appearance of a bifurcation for an inverted pendulum according to Poincare at 

 dependences  

Only later was such a possibility realized in a number of works on the confinement and 

capture of charged particles [
3, 26, 27

], particles with magnetic moment [
28, 29

] outside the zone 

and in the zone of parametric resopaps [
25,30,31

] in inhomogeneous electromagnetic fields. 

In conclusion, the author is grateful to L. S. Borovik-Romanov, M. I. Kaganov, and 

other participants in the seminar for discussing the work and the comments made.  
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